Efficient Privacy-Preserving Data Mining in Malicious Model
نویسندگان
چکیده
In many distributed data mining settings, disclosure of the original data sets is not acceptable due to privacy concerns. To address such concerns, privacy-preserving data mining has been an active research area in recent years. While confidentiality is a key issue, scalability is also an important aspect to assess the performance of a privacypreserving data mining algorithms for practical applications. With this in mind, Kantarcioglu et al. proposed secure dot product and secure setintersection protocols for privacy-preserving data mining in malicious adversarial model using zero knowledge proofs, since the assumption of semi-honest adversary is unrealistic in some settings. Both the computation and communication complexities are linear with the number of data items in the protocols proposed by Kantarcioglu et al. In this paper, we build efficient and secure dot product and set-intersection protocols in malicious model. In our work, the complexity of computation and communication for proof of knowledge is always constant (independent of the number of data items), while the complexity of computation and communication for the encrypted messages remains the same as in Kantarcioglu et al.’s work (linear with the number of data items). Furthermore, we provide the security model in Universal Composability framework.
منابع مشابه
Privacy-Preserving Data Mining in Malicious Model
Most of the previous cryptographic work in privacy-preserving data mining suggest solutions in the semi-honest model. Semi-honest model assumes that participating parties follows the prescribed protocol but try to infer private information using the messages they receive during the protocol. Although semi-honest model is realistic in many settings, there are cases where it may be better to use ...
متن کاملPrivacy Preserving Distributed K-Means Clustering in Malicious Model Using Zero Knowledge Proof
Preserving Privacy is crucial in distributed environments wherein data mining becomes a collaborative task among participants. Critical applications in distributed environment demand higher level of privacy with lesser overheads. Solutions proposed on the lines of cryptography provide higher level of privacy but poor scalability due to higher overheads. Further, existing cryptography based solu...
متن کاملPrivacy-Preserving Data Mining in Presence of Covert Adversaries
Disclosure of the original data sets is not acceptable due to privacy concerns in many distributed data mining settings. To address such concerns, privacy-preserving data mining has been an active research area in recent years. All the recent works on privacy-preserving data mining have considered either semi-honest or malicious adversarial models, whereby an adversary is assumed to follow or a...
متن کاملEffective Incentive Compatible Model for Privacy Preservation of Information in Secure Data Sharing and Publishing
Privacy preserving is one of the most important research topics in the data security field and it has become a serious concern in the secure transformation of personal data in recent years. For example, different credit card companies and disease control centers may try to build better data sharing or publishing models for privacy protection through privacy preserving data mining techniques (PP...
متن کاملPrivacy-Preserving Data Mining: A Game-Theoretic Approach
Privacy-preserving data mining has been an active research area in recent years due to privacy concerns in many distributed data mining settings. Protocols for privacy-preserving data mining have considered semi-honest, malicious, and covert adversarial models in cryptographic settings, whereby an adversary is assumed to follow, arbitrarily deviate from the protocol, or behaving somewhere in be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010